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Abstract: A perturbation formalism is developed for studying intramolecular forces and constructing models of molecular 
properties. Some characteristics of the theory are: (1) Zeroth-order wave functions can be conveniently chosen on physical 
grounds. (2) Knowledge of the zeroth-order Hamiltonian corresponding to the zeroth-order wave function is not required in 
order to get higher order corrections. (3) The theory can be applied to the study of intermolecular interactions without the ne­
cessity of assuming distinguishable electrons in the Hamiltonian. The formalism is used to obtain a model relating diatomic 
dipole moments to bond lengths, charge distributions, and charge polarizabilities. 

During the period immediately following the inception 
of quantum mechanics, many qualitative empirical concepts 
related to chemical bonds and properties were developed. These 
have proven quite useful to chemists and physicists. This de­
velopment was restricted to some extent by available experi­
mental data which were often faulty and misleading. 

In recent years highly accurate and reliable molecular data 
from both experimentalists and theoreticians have become 
available which makes possible considerably more detailed and 
reliable analysis of molecular interactions. Trends can be 
identified with some confidence and certain qualitative con­
cepts can be made semiquantitative. 

The extraction of detailed information about atomic inter­
actions and properties from experimental molecular data is 
facilitated by the use of models relating a particular property 
to bond parameters and charge distributions. In many cases 
the available data exceed in quality the corresponding models. 

Models are usually obtained qualitatively using classical 
electrodynamical arguments. Consequently they frequently 
neglect important effects explainable only by recourse to 
quantum mechanics. Prime examples of such models are the 
highly successful Rittner potential curve and dipole moment 
models.2 These models describe interactions between two po-
larizable spheres with charges ± 1. 

Brumer and Karplus3 have attempted to obtain and perhaps 
improve upon the Rittner models using a quantum mechanical 
formalism known as exchange perturbation theory.4 Although 
they showed that these could be derived by making certain 
quantum mechanical approximations, they failed to improve 
upon them significantly. This was due primarily to the fact that 
the formalism they applied assumed that the electrons in the 
Hamiltonian were distinguishable and could thus be associated 
with a particular nucleus. This assumption effectively precludes 
inclusion of partial charge transfer effects, a major limitation 
of the Rittner theory. 

In this paper we develop a perturbation formalism suitable 
for studying inter- and intra-molecular interactions which does 
not require an artificial division of the Hamiltonian into atomic 
components and an interatomic interaction potential. This 
formalism, implicit perturbation theory, has three essential 
characteristics: 

(1) The zeroth-order wave function is chosen on physical 
grounds rather than with respect to an explicit perturbation. 

(2) The perturbation series is obtained without partitioning 
the Hamiltonian into perturbed and unperturbed components. 

(3) Kinetic energy operators are treited on an equal footing 
with potential energy operators. 

This formalism in conjunction with empirical analysis gives 

us a procedure for obtaining and testing molecular models and 
relating them to charge distribution bond parameters and 
atomic properties. We apply the formalism here to obtain a 
dipole moment model for diatomic molecules; in the second 
paper of this series we test the model and compare it with the 
earlier models of Rittner,2 Brumer and Karplus,3 and DeWijn.5 

Implicit Perturbation Theory 

Conventional perturbation theory is designed to deal sys­
tematically with effects of small perturbations on physical 
systems when exact solutions of the appropriate Schrodinger 
equation are difficult to obtain and the properties of the un­
perturbed system are known with sufficient accuracy. In 
conventional perturbation theory the total Hamiltonian is 
expressed as a sum of a zeroth-order operator / / ( 0 ) and a per­
turbation V. Normally it is assumed that the complete set of 
zeroth-order eigenfunctions ipk^ and corresponding eigen­
values Ek^ are known. Corrections to these are obtained, in 
the Rayleigh-Schrodinger (RS) scheme, by solving the set of 
equations 

j/(°tyt(«) + fyk(«-D = ("f;1 Eku)^j )k(«-n (i) 

where #<°> = H^ - £(°> and V = V - £<' >. This approach we 
term an explicit perturbation theory since the Hamiltonian is 
partitioned into zeroth order and perturbing operators in an 
explicit way. 

Certain physical problems which logically call for a per­
turbation solution do not lend themselves to conventional ap­
proaches. For example, in the treatment of molecular inter­
actions we may have available an approximate wave function 
\j/ chosen on the basis of physical considerations. If it is desired 
to treat \p as a zeroth-order wave function and to use an explicit 
perturbation theory to improve it, it is necessary to construct 
an unperturbed Hamiltonian corresponding to \p and to develop 
procedures for solving nth order equations.6 Although the 
problem for obtaining / / ( 0 ) and V can be solved formally,6 the 
formal solution is frequently intractable. Furthermore, the 
decomposition of the Hamiltonian may be state dependent. 

Thus, a perturbation theory not requiring an explicit par­
tition of the Hamiltonian yet preordained by an appropriate 
wave function is desirable. Such a theory is developed below. 
We term it implicit perturbation theory. 

Let H(x) be a Hamiltonian operator for a system of particles 
functionally dependent on a parameter x in addition to ap­
propriate coordinates and momenta. Let \p(x) be an exact ei-
genfunction with corresponding energy, E(x), and \p(x) an 
approximate eigenfunction assumed expressible as a sum 
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Ux) = E gj(x)hj(x) (2) and 

where gj and hj are well behaved functions of x. We define a 
zeroth-order wave function 

V0Kx1X0) = Z gj{x0)hj{X) (3) 

where xo is a particular choice of x. Clearly iA(0)(*o.*o) = 

Let \xm(x,xo)\ be a set of basis functions in the Hilbert space 
of functions occupied by the exact eigenfunctions of H. 
Then 

\p = \p(°~>{x,X0) + E Cm(x,X0)Xm(x,X0) (4) 

We wish to extract from the coefficients, cm, in a well defined 
and systematic fashion, a series of progressively smaller cor­
rections to \pW such that 

i£ = E Vn) 

/I = O 
(5) 

Substituting eq 4 into the Schroedinger equation, premul-
tiplying by x«*. and integrating leads to the set of equations 

— E cm{Hnm ~ ESnm) — HnQ — ESnQ1 (6) 

where Hnm = {xn\H\xm) andSnm = {x„|Xm> with xo = ^(0) 

Using the definitions (H - £S)„TO = Hnm — ESnm, (h — 
Es)n = HnQ - ESnQ, (x)n = Xn, and (c)„ = Cn we can write 

c = - ( H - £ S ) - ' ( h - £ s ) (7) 

with the corresponding eigenfunctions \p expressible as 

^ = ^°) + CTX (8) 

The subscript on Cj indicates the transpose vector. To obtain 
an appropriate expansion of \p we define a diagonal matrix D 
with elements Dnm = 5nm(tm — t) where the tm and e comprise 
a set of energy values chosen to ensure that the diagonal ele­
ments of the matrix 

- W = (H - £S) - D (9) 

are small compared to the elements of D. We then expand (H 
— £S)_ 1 = (D — W) - 1 in a Taylor-like series, 

(H - ES)'1 = D- ' + D-1WD"1 

+ D-1WD-1WD-' + . . . (10) 

Assuming the series converges, the adroitness of the choice of 
the e„ and e affects the rate of convergence. Criteria for con­
vergence of both this and Rayleigh-Schroedinger expansions 
are derived in paper 3 of this series. Equations 10 and 7 in some 
respects define a perturbation-like expansion of the wave 
function. However, since the total energy appears in each term, 
the expansion is not particularly useful except as a semiem-
pirical scheme. Thus a further partitioning of terms is desir­
able. To obtain this we express the energy in the form 

E=Y. E(n) (H) 

where successive terms in the series will be energy corrections 
corresponding to successive terms in the series eq 5. To obtain 
this correspondence we first partition h — Es in eq 7 into the 
sum 

where 

h - £s = v + 6 

v = h - £(l)s 

(12) 

5 = - E E(n)s 
n = 2 

(14) 

We choose E( 1) to maximize the rate of convergence of eq 11. 
The best noniterative value of £(1) extractible from ^(0) is 
£(1) = (^°>|H\^°)>. This corresponds to the sum £<°) + £0) 
in conventional perturbation theory but requires no partitioning 
of the Hamiltonian. We next express —W in eq 9 as the sum 
of a large component V and a small correction A: 

(15) 

where 

and 

- W = V + A 

V = H - £ ( 1 ) S - D 

A = - E E(n)S 

(16) 

(17) 

Substituting eq 10-17 into eq 7 and ordering with respect to 
V, v, and £(«), treating V and v as first-order terms, allows us 
to write c in the form 

with 

c = £ c(«) 
n = l 

C(D = - D - ' V 

(18) 

(19) 

(20) c(2) = -D-1VcC) + 2(2JD-1S 

while for n > 2, 
/1 — 2 

c(«) = -D-1VCt"-') + E £ ( " - ^)D-1Sc**) 
k = \ 

+ £(n)D- 's (21) 

The nth order wave function is thus given by 
^(«) = CT(«)X (22) 

In summation form we have for the first few orders 

*<•> = - E ^«0X« 

n in - « 

and 

^ ) = E-
* mn ' nOXn 

• + £(2) E SnQXn 

(23) 

(24) 
nm(im ~ «)(«« - «) «« _ « 

where Vmn = (V)m„ and VnQ = (v)„. These equations are 
generalizations of the Rayleigh-Schrodinger equations, to 
which they reduce under conditions discussed in the next sec­
tion. Singular terms are excluded from the sums. 

The D Matrix and Energy Expansions 
There is a flexibility associated with the manner in which 

the energy £(«) can be determined from the wave functions 
through order \p(-"~l\ energies through £(« — 1), and the total 
Hamiltonian. 

A satisfactory relationship must be consistent with eq 11. 
An adroitly chosen correspondence should result in a rapidly 
converging series. The relationship, furthermore, may be 
dictated by physical or mathematical expediencies. 

One possibility is the identification £(n) = £("), where £(") 
is the nth order Rayleigh-Schrodinger energy. It is of course 
necessary to express £(") in terms of the total Hamiltonian 
since we are not assuming that the partitioning of the Hamil­
tonian associated with the zeroth-order wave function is known. 
This is easily accomplished. We simply multiply eq 1 by ^0)*, 
integrate over all space, note that (0|//(°)|m) = 0, and solve 

(13) for £<"> to obtain 
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fl-i 
£("> = (0[H\n - I ) - E £ w < 0 | n - k) (n> 2) (25) 

yfc=2 

where for convenience in notation we assume <0|O) = 1 and 
have defined 

H=H-E(I) 

and 

(26) 

(27) 

(28) 

(n\0\m) = Stin)*d\p(m)dT 

For the special case, n = 2, 

£<2>= <o|#| l> 

The advantage of this choice is that results can be compared 
directly with calculations based on Rayleigh-Schrodinger 
perturbation theory, provided the D matrix is constructed 
appropriately. 

Within RS theory it is well known that the wave function 
through order n can be used to calculate the energy through 
order 2« + 1. The appropriate equations for n > 1 assuming 
(^) = 1 and defining V = V-E^ art 

£(2«)= („- \\v\n) -

k-\ 

and 

E EW E (n+j-k\n-j) (29) 
k=2 j=0 

k-\ 
£(2«+D = (n\v\n) - E E(k) E (n + \ + j - k\n - j) 

k=2 j=0 

(30) 
These equations as written require a functional form for V. 
However, equivalent expressions can be written in terms of 
matrix elements of the total Hamiltonian. To obtain these we 
first add V\n) to both sides of eq 1 and rearrange to obtain the 
recursion formula 

V\n) = V\n- 1) +H\n) -*£ E^n - k) (31) 

k=2 

Successive application of this equation yields 

_ n n m 

V\n)= E H\k)- E E E^\m-k) (32) 
k=0 m=2k=2 

Direct substitution into eq 29 and 30 then leads to £ ( 3 ) = 
(\\H\\) + £<2> and, for n > 1 

£(2») = E (n - \\H\k) - E E E^Hn - \\m- k) 
k = 0 m=2k=2 

- E EW "f: (n + j-k\n-j) (33) 
k=2 j=0 

and 

£(2«+D = £ <«|)J|Jfc> - E E £ ( / c )<«|w - A:> 
* = 2 m = 2 ( t = 2 

- E £<*>*£' < « + ; + 1 - * | « - ; > (34) 
k=2 j=0 

It is thus possible, using eq 33 and 34, to obtain energy cor­
rections associated with a particular i^(0) utilizing the total 
Hamiltonian H rather than a perturbation V. 

A certain flexibility is associated with the construction of 
the D matrix. It is clear, for example, from eq 9 that if x is an 
approximation to the nth state eigenfunction then e„ should 
approximate the nth energy state. One approximation is given 
by 

in= (Xn\H]Xn) (35) 

yielding an in — i equivalent to a difference in energies through 

first order in the sense of conventional perturbation theory. If 
the set of states ji/'n'0'} and corresponding eigenvalues are 
known these serve as satisfactory choices of e„. 

Dipole Moment Model 

In this section we apply implicit perturbation theory to the 
problem of obtaining a dipole moment equation which relates 
the dipole moment of diatomic molecules to bond lengths, 
charge distributions, charge polarizabilities, and charge 
overlap. 

The procedure for obtaining a dipole moment model for a 
molecule AB with nuclear charges Z A and Z B involves ana­
lyzing the expectation value of the dipole moment operator, 

MM 
where A = n„ + (iE and ^ = i/^0) + ^{1) + . . . with 

_ (Z A - Z 8 ) . 
MA' - R + ( Z A + Z 8 ) R , 

(36) 

(37) 

and/i£- = Iiktk- The vector R = (RA — R B ) / 2 is a vector con­
necting the two nuclei while Rc = (RA + R B ) / 2 is a position 
vector to the geometric center of the molecule with RA, RB, and 
Tk position vectors to nuclei A and B and electron k, respec­
tively. The choice of ^(0^ is made on physical grounds. The 
first-order correction to the wave function is obtained following 
the procedures outlined in the Implicit Perturbation Theory 
section. 

An appropriate choice of i/^0' is based on the following 
considerations. As two ground state neutral atoms approaching 
from infinity enter the curve-crossing region, the ground state 
becomes degenerate with the state corresponding to ap­
proaching ions; the matrix elements connecting the two states 
become nonnegligible. As a result, the atoms emerge from the 
region in a ground state a portion of the time and an excited 
state the remainder, with the relative probability determined 
by the interaction matrix. Because of the nonvanishing off-
diagonal matrix elements connecting the initial states, the final 
states correspond neither to pure ionic nor pure neutral atom 
states but to mixtures of the two. As the atoms go through the 
curve-crossing region, charge is redistributed throughout the 
molecule. An effective charge/ is transferred from one atom 
toward the other resulting in a rapid increase in the dipole 
moment from zero to/ /? . (This is not to say that the atoms 
acquire charges of ± / but that half the difference between the 
two charges is/.) 

A proper description of changes occurring in the curve-
crossing region requires degenerate perturbation theory. Since 
we are interested primarily in models of properties accurate 
near 7?e, this complication can be avoided by an adroit choice 
of the zeroth-order wave function. Let RQ be a value of R 
somewhat less than the curve-crossing separation, such that 
final state interactions are small, but greater than Re, so that 
the distortion polarization effect is also small. The zeroth-order 
wave function i/-(°) then has atomic charge distributions frozen 
in shape at RQ, but centered on the nuclei and movable with 
them. The charge transfer effect appears in the zeroth order, 
but other effects such as polarization are effectively excluded 
until higher orders. Note that this choice of ^ ( 0 ) is R dependent. 

Thus we let \\p„(Ro)\ be a complete orthonormal set of mo­
lecular states with corresponding eigenvalues .En(ZJo)' We 
assume these are approximately expressible in the form of 
single determinant SCF functions 4>„(Ro) = A\n » ^n(Ro) 
where 

Xn= * „ ' ( 1 ) * « 2 ( 2 ) . . . *nN(N) (38) 

Here, A is an antisymmetrizer. The functions $„* = 4>n
Ak + 

4>n
Bk are molecular spin orbitals with 
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i"* = i :<V**(tfo)x/ ' (Ko) (39) 

linear combinations of basis functions, xja. centered on nucleus 
a. The <IV are assumed to satisfy the orthonormal conditions 
< <M *« * > = 8jk HtR = O. In the context of eq 3 we let R, cnJ, 
and Xj P'ay the roles of x, gj, and hj, respectively, and define 
a zeroth-order set of functions 

where 

W0KR-Ro) = A n *i,''(/;K;*o) 

*„''(/;/?;^o) = E c«/ a*(*o)x/ a (*) 

(40) 

(41) 

The zeroth-order ground state \pm = i/<o(0) then describes a 
hypothetical state of two converging interpenetrating charge 
clouds whose shapes are determined by the distribution at RQ. 
The charge distributions are thus not allowed to polarize as R 
decreases. We can now proceed to evaluate eq 36. 

Let us first examine the integrals {\l\ip) = 1 at R = RQ. AS 
R decreases, additional overlapping of charge clouds occurs. 
Since overlap integrals vary exponentially with R, (4\\p) ~ 1 
+ ((R) indicates an exponential dependence on R with ((Ro) 
= 0. An analysis of ((R) suggests that it is the sum of two types 
of terms: those describing valence electron intermediate range 
attractive overlapping and those describing short-range Pauli 
Exclusion inner shell repulsive overlapping. The latter dies off 
quickly, dominating only at distance 5 less than Re. 

Since / t \ is independent of electron coordinates, (M/V) = HN'< 
furthermore, (IP\HE\$) ~ M£00 + M£01 where HE00 = 
<i/< ( 0WI^ ( 0 ) and HE0] = 2<!A ( 0W|^ ( 1 )>. Since HE is a 
one-electron operator its expectation value is conveniently 
expressed as 

M£00 = <Xo|/U£|xo> + <Pxo|M£|xo> (42) 

The operator P is a permutation operator representing all 
permutations of x with appropriate signs. The second term on 
the right is zero at RQ. It increases rapidly at values of R less 
and Re and represents an effect on the dipole moment due to 
Pauli Exclusion charge cloud overlapping.3'8 This behavior is 
expected to be exponentially dependent on R and approxi­
mately describable by a function of the form ke~yRR where 
k and y are constants and R = R / R is a unit vector in the di­
rection of R. 

The first term on the right-hand side of eq 42, to the extent 
that we can ignore the departure from orthonormality of the 
(<£„, *| <f>„ *) , can be written as 

(XoIMfI Xo) = ~ E [<< „-4*1 
r* „-4* 

+ 2 ( 0 o ^ | r*| 4>oBk) + < 00**1 r*| 4>oBk) ] (43) 

The one-center terms can be evaluated by replacing r* by Ra 

+ r/;„ and noting that the charge distributions are cylindrically 
symmetric; thus 

(^oak\rk\4>oak) = Ra[nj(<foak\Ef\ 4>oak) (44) 

where na
k = (0o |0o ) can be roughly regarded as the 

probability of finding the electron in the ktb. molecular spin 
orbital about center a and Zi1n = z* — za. To evaluate the 
two-center matrix elements in eq 43 we set !> = Rf + r*f and 
again apply cylindrical symmetry. Hence 

2(( |rttfoB*> 

Rrl / J A B * + 2 / . „ A * Zkc 

R 
„Bk (45) 

where «AB* = 2{(t>oAk\(paBk) can be considered as approxi­

mating the charge in orbital 0* shared by the two atoms. The 
matrix element on the far right of eq 44 represents a zeroth-
order polarization contribution to the dipole moment. It reflects 
the departure from spherical symmetry of the 0oa* functions 
at Ro. We thus designate the sum of these terms as jtpoi00-

Adding the contributions from HE00 and HN, defining qa = 
Za — YIk na

k, and replacing RA by R/2 + Rc and RB by 
- ( R / 2 ) + Rc, gives 

HN + HE00 = ̂ 3 2 R + ke-yKR + HM 00 

- 2 £ < 0 0 ^ 1 ^ 1 0 0 * * ) R (46) 
k 

The quantity qa represents the charge on center a. Replacing 
Zck by zcv + Zvk where Rv indicates the approximate center of 
overlap charge buildup and making the assumption that 
<0oA*|z„,t|0oB*) * 0. ' -c , the covalent overlap is symmetric 
about the point indicated by R„, leads to the result. 

VLN + M£00 = / R + ke~yRR + Mpoi00 + <7AB zcvR (47) 

where 

/ = ( < 7 A - < 7 B ) / 2 (48) 

with <7AB = — Y.k "AB*, roughly the electronic charge shared 
by atoms A and B. According to eq 47, the dipole moment in 
zeroth order consists of an effective charge ± / separated by 
a distance R, a constant term representing the polarization 
present at RQ, an exponentially dependent term representing 
the Pauli Exclusion overlap effect on the dipole moment, and 
a term representing a covalent contribution to the dipole mo­
ment. The latter is proportional to the covalent charge buildup 
and to the difference in radii of the reacting atoms. Thus if the 
atoms are approximately the same size and if the bond is almost 
completely ionic this term is small. On the other hand, this term 
can be important if the reacting atoms are dissimilar in size or 
if the bond is largely covalent. 

The remaining term to be considered is HE01 • To evaluate 
this we require a first-order wave function. According to eq 23 

VnOXn 
*<•> = - £ . 

n (n — ( 
(49) 

where the e's are elements of the D matrix (Eq. 9), the \„ are 
basis functions and 

VnO = HnQ-E(\)SM (50) 

with H„o = (Xn\H\Va)), SnQ = (x*Hm), and £(1) = 
(i//(°)|//|^(°)). Based on the discussion in the D Matrix and 
Energy Expansions section we make the identification („ = 
En(R0), ( = Eo(Ro), and x« = 4>„(R,Ro). Thus, substituting 

gives 

VnQHnO 

f o r ^ ' ) i n M £ 0 1 

M£01 = E 
En — EQ 

(51) 

where ji„o = (^«1 MEI 1Ao)- To simplify the analysis of this term 
we assume SnQ = 0, an exact result at RQ and an approximation 
at smaller /?'s. We next note that Vno(Ro) approaches zero as 
.R approaches RQ. Furthermore by expanding the matrix ele­
ments into one- and two-center components we may write VnQ 

AB. Thus Vn0
AA + K„0

BB = = Vn0-
7n0 

A A + 
-Vno

AB(Ro) 
Vn0

BB + Vn0 
It follows that 

VnQ(R) = H„QAB(R) ~ HnQ^(R0) (52) 

The matrix element of the total Hamiltonian can be expressed 
as a sum of a kinetic energy term, T„oAB, and a potential energy 
term, Un0

AB 

Hn0
AB(R) = Tn0

AB(R) + Un0
AB(R) (53) 

The kinetic energy term has the form 
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r„oAB--fcE[<0i.A*MWJ*) + <0„B*|v2|foA*>] <54) 
k 

since the dipole moment operator only couples single-particle 
excitations. Thus we may write HE01 as a sum of two terms, 
HET01 and HEU0[, with 

oi _ , ^ Tn0
A*(R) - r„0

AB(J?o) 
HET ~ - 2 2 - ~ ^ M«0 

« t,„ ~ LQ 
and 

M£t/ 
oi _ = - 2 E 

t/„oAB(fl) - l/„0
AB(J?0) 

•M«0 

(55) 

(56) 
En — Eo 

The first of these represents a dynamic rather than static 
contribution to the dipole moment. It is a quantum mechanical 
effect completely missing in classical models of the Rittner 
type. From an examination of eq 54 it appears that the R de­
pendence of this term is strongly coupled to the R dependence 
of charge overlap. However, the virial theorem suggests that 
its R dependence closely approximates that of the potential 
energy in form. 

The second term, HEU01. ls a static factor related primarily 
to the electromagnetic response of the charge clouds to charges 
on opposite centers. To extract the R dependence we expand 
t/„oAB in the form 

t/„oAB = - E E Unak^ W * ) 
k.y a^/3 \ fky I 

- E ( 4>nak — <t>0ak ) + Mcou] + Mhyb + Mexc (57) 
k.a^ff \ ?kP I 

where 

iWcoui = E E 
a^/3 k^l 

(0„«*(1)0»<"(2) 
r\2 

4>oak(\) <fo fi'(2) ) 

- ^4>nak{\)4>n8'{2) ^- 0 o ^ ( 2 ) 0 o a / ( l ) ) ] (58) 

with similar definitions for the hybrid and exchange matrix 
elements, Mhyb and Mexc. Three terms in eq 57 depend on 
charge overlap: the first, Mhyb, and Mexc. 

We next introduce expansions of the form 

4TT 

— = E 
fka Im 21 + I /•> 

and 

n, 

ATT 

T^v,m(he)rim*(R) (59) 

Y1^(T)Vr* (RQ/3) (60) 
,,j fc2/+lr>/+l 

where r = np — i > and Ra/3 = Ra - R0. To a good approxi­
mation, since most electron density associated with a given 
center is found within a sphere of radius r < R, we can 
write 

and 

-L = I + IM + W M I + 
rka R R 2 R3 

1 _ 1 , 2 P2°(r) 
r,j R R2 Ri 

(61) 

(62) 

where we let R lie in the z,direction pointing from B to A. In­
troducing expansions 61 and 62 into integrals in eq 57 leads 
to the result 

U„0
f R _ C7AZB"U - 9 B Z A " " + <}ABZABn0(R) 

R2 (63) 

where zAB""(R) incorporates contributions due to A/hyb and 
A/exc and 

Za"0= E <0„"*|z*„ko°*> (64) 

To obtain eq 63, we have assumed that the term proportional 
to 11R is negligible due to the factor (4>„ak\ 4><fk) appearing 
in the numerator. We have also neglected terms higher than 
\/R2 and effects due to Pauli Exclusion overlapping. Similarly 
we can expand H„Q as 

M«o = ( Z A 0 " + 7B0" + Z A B ° " ) R (65) 

Introducing eq 65 and 63 into eq 56 and identifying the term 
in U„oAB(Ro) with a zeroth-order polarization, Hpo\°\Ro), 
yields 

01 _ 2 f (qAzB"° - qBzA"° + qABzAB"°) 

»EU - " F ? L E-^T0 

X (ZB"° + ZB"° + z A B " ° ) « ] + Mpoi°'(«o) (66) 

To simplify further we assume that the excitations can be as­
sociated primarily with one center or the other. Thus the set 
\n\ reduces to sets \nA\ and \nB\. Furthermore EnA -EQ^ E „ A 

— EQA and E„B — EQ- E„B — EoB are approximately differ­
ences in atomic energies. Equation 66 then reduces to 

IJ-EU = [qBaA;2
qAaB

 + eAB(R)]R (67) 

with 

,«o 
6AB(K) = - ^ r E -^2TT [<7AZB"° - <7BZA"° 

R2n En- E0 

+ <7AB(ZBB0 + ZB"° + zAB"0)] (68) 

and 

« A = 2 E • 
(ZA"°) «0\2 

- F A v A (69) 
n £„ A - £ 0

A 

The term CAB is proportional to the overlap between zeroth 
order and excited orbitals while aA represents the polarizability 
of atom A. If we further note that qA + qB + qAB = 0 for un­
charged molecules we can write 

HEV 01 _ [ OtA + «B , „ O B - O A , . 
~ I J ^l + ^AB , , „ , + 6AB( R2 IR2 R)]R (70) 

The first term represents the mutual polarization of two hy­
pothetical ions whose charges are ± / . The second is equivalent 
to a polarization of opposite ions by an overlap charge situated 
at the center of the molecule. In rare gas molecules w h e r e / * 
0, terms of this type account for the fact that collision induced 
moments vary exponentially with R and are proportional to 
differences in atomic polarizabilities.8 The term CAB contains 
similar interactions. An analysis of the remaining terms yields 
in the lowest approximation the term 4qAB(aA — aB)/R3. 

Collecting, absorbing the zeroth-order polarization contri­
bution into the 1 /R3 terms, and incorporating the kinetic en­
ergy contribution into the exponential term leads to the dipole 
moment model 

, « , * ( ! - « A J L « B ) + , * ( 2 * : 

- 7 "A ~ «B> + ke~<R (71 

where c = -qAB/2 = (qA + <7B)/2. According to this model 
the dipole moment of a diatomic molecule can be resolved into 
three principal components. The first of these corresponds to 
the dipole moment associated with two hypothetical charges 
±/centered on the respective nuclei. The second represents the 
dipole moment due to a covalent charge centered in the overlap 
region. This charge polarizes the charge clouds centered on the 
two nuclei. The third primarily represents short-range over­
lapping effects. 

In highly polar molecules the first term should predominate 
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at large R. In very covalent molecules, whose component atoms 
are quite different in size, the second term should contribute 
significantly to the dipole moment. The model should apply 
equally well to molecules ranging from highly polar to hom-
onuclear. In the latter case the dipole moment given by eq 71 
reduces to zero as it should. This model in conjunction with 
experimental data can be used to explain trends in charge 
distributions in diatomic molecules across the periodic table. 
This possibility is explored in part 2 of this series. 
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The relationship of atomic interactions and molecular 
properties to bond parameters and charge distributions can be 
studied with the aid of appropriate models in conjunction with 
experimental data. Models of molecular properties are usually 
based on qualitative classical electrodynamic arguments and 
are self limiting in that they frequently do not incorporate 
important quantum mechanical effects. It is therefore desirable 
to derive models within the framework of a quantum me­
chanical formalism. 

One procedure for facilitating this endeavor was developed 
in the first paper2 of this series (1). There, a model relating 
dipole moments to bond lengths in diatomic molecules was 
derived using a formalism termed implicit perturbation theory. 
The model has the form 

V R Ri I 
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The first term represents the dipole moment associated with 
two hypothetical polarizable charges ±f located at the two 
nuclei. The second term describes the dipole moment associ­
ated with an overlap charge —2c located a distance — zCD 

toward A from the geometric center of the molecule. This 
charge induces moments in the partially charged ions. The 
third term approximates collision-induced moments at dis­
tances less than Re in addition to effects due to kinetic energy 
variations with R. 

In this paper we introduce a dipole moment model appro­
priate to highly polar molecules and evaluate it by analyzing 
experimental dipole moment data. The functional form we 
adopt is suggested both by the quantum mechanical model and 
the classical arguments of Rittner.3a Constants are obtained 
empirically by demanding the best possible fit with experi-
menta alkali halide data. Trends among the fitted constants 
are examined graphically to determine the correlation between 
actual and expected behavior. 

Based on an analysis of the constants, we attempt to deduce 
new information pertaining to bond formation and to evaluate 
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Abstract: An accurate dipole moment model is used to analyze dipole moments of alkali halide molecules. It is found that for 
these molecules the effective charge transferred during molecular formation,/, ranges systematically from 0.76 to 0.99 in an 
order predictable from the periodic table. The/s are related to atomic parameters by the equation/ = (^M ~ <?x)/2 where qa 

is the ideal charge of atom a. The model is found to predict equilibrium dipole moments and slopes for alkali halides which dif­
fer on the average from experimental values by 0.33 and 1.5%, respectively. A complete table of alkali halide dipole moments 
is constructed; given are coefficients in the equation Hvj = Mo + Mi(̂  + 1A) + Mn(" + ]h)2 + HoJJ(J + 1) + n\JJ(J + 1)(" + 
/2), where v and J are vibrational and rotational quantum numbers, respectively. The model is compared with several other di­
pole moment models. The model leads to a plausible interpretation of the signs of equilibrium dipole moments for such mole­
cules as CF which have appeared to violate chemical intuition. A quantitative procedure for resolving chemical bonds into ionic 
and covalent components is proposed. The method derives from an analysis of alkali halide dipole moment measurements. 
Bonds are classified according to their polarity/ = (<JA — <7B)/2 and their covalency c = (<?A + ? B ) / 2 . A new concept, the dif­
ferential charge affinity, is introduced to explain trends in the bond polarities of alkali halide molecules. The relationship of 
this property to ionization potentials and electron affinities is explored. A comparison of bond polarities and differential charge 
affinities with the older concepts of ionic character and electronegativity is given. 
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